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Reminder: 
Relational Algebra Operators

Core operators:

• Selection σ

• Projection π

• Cartesian product x

• Union U

• Difference –

• Renaming ρ

Derived operators:

• Join ⋈

• Intersection ∩



Core RA operators



Slice operations: Projection

S=attribute list(R)



Produces from relation R a 

new relation that has only the 

A1, …, An columns of R. 



Slice operations: Selection

S=condition ( R )

Produces a new relation with those 

tuples of R which satisfy condition 

C. 



Join operation: Cartesian product

T=R x S

X

1. Set of tuples rs that are formed  

by choosing the first part (r) to be 

any tuple of R and the second part 

(s) to be any tuple of S. 

2.Schema for the resulting relation 

is the union of schemas for R and 

S. 

3.If R and S happen to have some 

attributes in common, then prefix 

those attributes by the relation 

name.



Union

T=R  S

R S

R U S



Difference

R  S

R - S

R S



Renaming Operator

S(A1,A2,…,An) (R)

1. Resulting relation has exactly the same tuples as R, but the name of 

the relation is S. 

2. Moreover, the attributes of the resulting relation S are named A1, A2, 

…, An, in order from the left. 



Query with renaming: example

• Find all reciprocally connected 
nodes in a directed graph

• By renaming T we created two 
identical relations R and S, and we 
now extract all tuples where for 
each pair X → Y in R there is a pair 
Y → X in S

T (node1, node2)

A → B
B → A
B → C
A → C
C → B

SELECT R.node1, R. node2
FROM T as R, T as S
WHERE R. node1 = S. node2
AND R. node2 = S. node1

πR.node1, R.node2 σR.node1=S.node2 AND R.node2 = S.node1(R (T) x S (T)) 



Core operators – sufficient to express 
any query in relational model

• Relational model due to Edgar “Ted” Codd, a mathematician 
at IBM in 1970

• A Relational Model of Data for Large Shared Data 
Banks". Communications of the ACM 13 (6): 377–387

• He proved that any query can be expressed using these core 
operators: σ, π, x, U, –, ρ

The Relational model is precise, implementable, and 
we can operate on it (query/update, etc.)

http://www.acm.org/classics/nov95/toc.html
http://en.wikipedia.org/wiki/Communications_of_the_ACM


Note that any RA Operator 
returns relation, so we can 
compose complex queries from 
known operators

SELECT DISTINCT
sname,
gpa

FROM Students
WHERE gpa > 3.5;

Students(sid,sname,gpa)

How do we represent 
this query in RA?

π𝑠𝑛𝑎𝑚𝑒,𝑔𝑝𝑎(𝜎𝑔𝑝𝑎>3.5(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠))

𝜎𝑔𝑝𝑎>3.5(π𝑠𝑛𝑎𝑚𝑒,𝑔𝑝𝑎( 𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠))

Are these logically equivalent?

Relational algebra: closure



RA has Limitations !

• Cannot compute “transitive closure”

• Find all direct and indirect relatives of Fred

• Cannot express in RA !!!  

• Need to write C program, use a graph engine, or PL-
SQL…

Name1 Name2 Relationship

Fred Mary Father

Mary Joe Cousin

Mary Bill Spouse

Nancy Lou Sister



Derived RA operators



T= R       condition S

Join operation: Theta-join 

Shortcut for
T=σcondition (R x S)

X

σ

1.The result of this operation is 

constructed as follows:

a)Take the Cartesian product 

of R and S.

b) Select from the product only 

those tuples that satisfy the 

condition C.

2.Schema for the result is the 

union of the schema of R and S,

with “R” or “S” prefix as 

necessary.



T= R       R.A = S.B S

Join operation: Equijoin

Shortcut for
T=σ R.A = S.B (R x S)

X

σ

1.Equijoin is a subset of theta-

joins where the join condition is 

equality



Natural Join

R     S

Let A1, A2,…,An be the attributes in both the schema of R

and the schema of S. 

Then a tuple r from R and a tuple s from S are 

successfully paired if and only if r and s agree on each of 

the attributes A1, A2, …, An. 

Special case of equijoin when 

attributes we want to use in join have 

the same name in both tables



T= R       condition S

Outer join
1. For each tuple in R, include all 

tuples in S which satisfy join 

condition, but include also tuples 

of R that do not have matches in S

2. For this case, pair tuples of R 

with NULL

X

NULL

σ

Left outer join



Outer join: example

age zip disease

54 99999 heart

20 44444 flue

33 66666 lung

age zip job

54 99999 lawyer

20 44444 cashier

Anonymous patient P Anonymous occupation O

age zip disease job

54 99999 heart lawyer

20 44444 flue cashier

33 66666 lung NULL

T= P        O



Quick question

If I have a relation R with 100 records and a relation S with 
exactly 1 record, how many records will be in the result of R 
LEFT OUTER JOIN S?

A. At least 100, but could be more

B. Could be any number between 0 and 100 inclusive

C. 0

D. 1

E. 100
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Intersection

T=R  S
R S

R S

R  S



Why intersection is not a “core” operation?

R S

R-S

R - S (are in R but not in S)

R S

R - (R-S)

R  S



Why intersection is not a “core” operation?

R  S shortcut to 
R – (R – S)

Can be derived using core operations



Set vs. bag (multi-set) semantics

• Sets: {a,b,c}, {a,d,e,f}, …

• Bags: {a,a,b,c}, {b,b,b,b,b}, …

• Relational algebra has two semantics:

• Set semantics = standard relational algebra

• Bag semantics = extended Relational Algebra

• Rule of thumb:

• Every paper will assume set semantics

• Every implementation will assume bag semantics



Operations on multisets

All RA operations need to be defined carefully on bags

• C(R): preserve the number of occurrences

• π A(R): no duplicate elimination

• Cross-product, join: no duplicate elimination

This is important- relational DBMSs 
work on multisets, not sets!



Extended operators on bags

• Duplicate elimination δ

• Sorting τ

• Grouping and aggregation γ



RDBMS query evaluation

How does a RDBMS answer your query?

SQL 
Query

Relational 
Algebra 

(RA) Plan

Optimized
RA Plan

Execution

Declarative query 
(user declares 
what results are 
needed)

Translate to 
relational algebra 
expression

Find logically 
equivalent- but 
more efficient- RA 
expression

Execute each 
operator of the 
optimized plan!



{P1,P2,…..}

parse

convert

improve logically

estimate sizes

consider physical plans

estimate costs

pick best execute

answer

SQL query

parse tree

logical query plan

“improved” l.q.p

l.q.p. +sizes

statistics

question
RDBMS query optimizer: steps

• Convert parsed SQL into corresponding 
RA expression

• Apply known algebraic transformations 
– produce improved logical query plan

• Transform based on estimated cost
• Choose one min-cost logical expression
• For each step, consider alternative 

physical implementations
• Choose physical plan with min I/Os
• Execute



RDBMS query evaluation

How does a RDBMS answer your query?

SQL 
Query

Relational 
Algebra 

(RA) Plan

Optimized
RA Plan

Execution

Declarative query 
(user declares 
what results are 
needed)

Translate to 
relational algebra 
expression

Find logically 
equivalent- but 
more efficient- RA 
expression

Execute each 
operator of the 
optimized plan!

That we just 
learned how to do!



Example: two SQL queries – the 
same execution plan

R ⋈R.A = S.B S σ R.A = S.B (R x S)

SELECT * 
FROM R, S
WHERE R.A = S.B

SELECT * 
FROM R JOIN S
ON R.A = S.B

Join Cross-product 
with selection

• Two ways to request the same results
• The optimizer does not care about the syntax of SQL query: it is going to 

work on the algebraic representation anyway
• Because the algebraic expressions are equivalent, the optimizer will have 

the same final plan for both queries



RDBMS query evaluation

How does a RDBMS answer your query?

SQL 
Query

Relational 
Algebra 

(RA) Plan

Optimized
RA Plan

Execution

Relational Algebra allows us to translate declarative (SQL) 
queries into precise and optimizable expressions!
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Translating general SQL queries 
(SELECT-FROM-WHERE) into RA

• What is the general form of an SFW query in RA?

• Given a general SFW SQL query:

SELECT A_1, ..., A_n

FROM R_1, ..., R_m

WHERE c_1, ..., c_k; 

• We can express this in relational algebra as follows:

π A1,...,An (σc1⋯σck
(R1x…xRm))



We can visualize the RA 
expression as a tree

π𝐵

R(A,B) S(B,C)

π𝐵(𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶 )

Bottom-up tree traversal = order of operation execution! 



From RA to SQL

π𝐵

R(A,B) S(B,C)

What SQL query does this 
correspond to?

Are there any logically 
equivalent RA expressions?



π𝐴,𝐷

R(A,B) S(B,C)

T(C,D)

A<10

π𝐴,𝐷(𝜎𝐴<10 𝑇 ⋈ 𝑅 ⋈ 𝑆 )

SELECT R.A,T.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

R(A,B)  S(B,C)  T(C,D)

From SQL to RA: example 1



π𝑐𝑖𝑡𝑦,𝑐

S(product,city,price)

γ 𝑐𝑖𝑡𝑦, 𝑠𝑢𝑚(p𝑟𝑖𝑐𝑒) → p, 𝑐𝑜𝑢𝑛𝑡(∗)→𝑐

p>100

SELECT city, count (*)
FROM S
GROUP BY city
HAVING sum(price)>100

S (product, city, price)

π𝑐𝑖𝑡𝑦,  𝑐 (𝜎 𝑝>100 (γ 𝑐𝑖𝑡𝑦, 𝑠𝑢𝑚(p𝑟𝑖𝑐𝑒) → p, 𝑐𝑜𝑢𝑛𝑡(∗)→𝑐(𝑆)) )

From SQL to RA: example 2



RDBMS query evaluation

How does a RDBMS answer your query?

SQL 
Query

Relational 
Algebra 

(RA) Plan

Optimized
RA Plan

Execution

We transform the original RA expression into 
equivalent expressions using algebraic laws
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RA laws involving selection ()      

Selection for a single relation

• Splitting law:

• Commutative law: order is flexible

))(()( RR DCDC  

))(())(( RR CDDC  



Binary selection (on 2 relations)

RA laws involving selection () 

 )( SRC

)( SRC 

)( SR DC 

For the binary operators, we push the selection to R only if all 

attributes in the condition C are in R.

SR C

SRC )(

SR DC )(



Pushing selections: example

Consider R(A,B) and S(B,C) and the expression below:

A=1 ∩ B<C(R❖ S) 

1. Splitting AND A=1 (B < C(R❖ S))

2. Push  to S A=1 (R❖ B < C(S))

3. Push  to R A=1 (R) ❖ B < C(S)



Laws for (bag) projection

A simple law: Project out attributes that are not 
needed later. 

• i.e. keep only the output attr. and any join attribute. 

)( SRL 

)( SR CL 

 )( SRL

))()(( SR NML  

))()(( SR NCML  

))()(( SR NML  

  RCL     RMCL 



Pushing projection: example

Schema R(a,b,c), S(c,d,e)

 )( SRxea  ))()(( ,, SR eccaxea  

 )(, SRyedxba  ))()(( ,,, SR cyedcxbayx   



Why to push projections?

π𝐵

R(A,B) S(B,C)

π𝐵

R(A,B) S(B,C)

π𝐵

Why might we prefer this plan?



Commutative and associative laws 
for joins

• Commutative and associative laws for joins:

Above laws are applicable for both sets and bags

R ⋈ S = S ⋈ R
(R ⋈ S ) ⋈ T = R ⋈ (S  ⋈ T) 



Quick question

• Given relation R(A,B):

• Here, projection & selection commute: 

• 𝜎𝐴=5(π𝐴(𝑅)) ↔ π𝐴(𝜎𝐴=5(𝑅))

• What about here?

• π𝐵 𝜎𝐴=5 𝑅 ↔ 𝜎𝐴=5(π𝐵(𝑅)) ?



π𝐴,𝐷

R(A,B) S(B,C)

T(C,D)

A<10

π𝐴,𝐷(𝜎𝐴<10 𝑇 ⋈ 𝑅 ⋈ 𝑆 )

SELECT R.A, T.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

R(A,B)  S(B,C)  T(C,D)

Logical optimization: example

Push down 
selection on A so 
it occurs earlier 
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π𝐴,𝐷

R(A,B)

S(B,C)

T(C,D)

π𝐴,𝐷 𝑇 ⋈ 𝜎𝐴<10(𝑅) ⋈ 𝑆

SELECT R.A, T.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

Push down 
projection so it 
occurs earlier 

A<10

R(A,B)  S(B,C)  T(C,D)

Logical optimization: example



π𝐴,𝐷

R(A,B)

S(B,C)

T(C,D)

π𝐴,𝐷 𝑇 ⋈ π𝐴,𝐶 𝜎𝐴<10(𝑅) ⋈ 𝑆

SELECT R.A, T.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

We eliminate B 
earlier!

A<10

π𝐴,𝐶

In general, when 
is an attribute 
not needed…?

R(A,B)  S(B,C)  T(C,D)

Logical optimization: example



Improving logical query plans 
using algebraic laws: summary

1. Push  as far down as possible

2. Do splitting of complex conditions in  in order to push 
even further

3. Push  as far down as possible, introduce new early  (but 
take care for exceptions)

4. Combine  with  to produce -joins or equijoins

5.   Choose an order for joins Topic by itself



Why still so many different plans selected 
for the same query? Depends on sizes of 
intermediate outputs

• Same query executed with different 
selection cardinality – covering from 
0 to 100% of all values – results in 
completely different plans

• Here: 89 plans, each in different 
color

SELECT extendedprice
FROM lineitem, supplier
WHERE lineitem.sID = supplier.sID
AND extendedprice: varies
AND supplier.accountbalance: varies

Picasso Database Query Optimizer Visualizer: 
link

http://dsl.serc.iisc.ernet.in/publications/conference/demo_vldb10.pdf


Coming next: 
cost-based transformations


