Roadmap

[Handling large amount of data efficiently]

Stable storage

el Implementing
Paralle n _
External memory { resilience

algorithms and dataflow coping with

system failures
data structures y

Algorithms for
MapReduce

Implementing

relational
Introduction to
query optimization

Implementing

concurrency
operators

Lecture 03.03

Query optimization

Part |. Logical query optimization

By Marina Barsky
Winter 2017, University of Toronto

Reminder:
Relational Algebra Operators

Core operators:

* Selection o
Projection 1t
Cartesian product x
Union U

Difference —
Renaming p

Derived operators:
* Join
* |Intersection N

Core RA operators

Slice operations: Projection

Produces from relation R a

new relation that has only the

A, ..., A, columns of R.

S:Tcattribute Iist(R)

Slice operations: Selection

Produces a new relation with those
tuples of R which satisfy condition

C.

S:crcondition (R)

HNEEEEEN
Lo
i

Join operation: Cartesian product

1. Set of tuples rs that are formed
by choosing the first part (r) to be
any tuple of R and the second part
(s) to be any tuple of S.

2.Schema for the resulting relation l
IS the union of schemas for R and
S.

3.If R and S happen to have some
attributes in common, then prefix
those attributes by the relation
name.

T=R xS

Union

T=RUS

Difference

R-S

Renaming Operator

Ps(a1,A2,...,An) (R)

1. Resulting relation has exactly the same tuples as R, but the name of
the relation is S.

2. Moreover, the attributes of the resulting relation S are named A,, A,
..., A, in order from the left.

Query with renaming: example

T (nodel, node2) * Find all reciprocally connected
nodes in a directed graph

A—->B

B—>A

B>C * By renaming T we created two

A->C identical relations R and S, and we

C->B now extract all tuples where for
each pair X - Y in R there is a pair

SELECT R.node1, R. node2 Y=>Xin5S

FROM TasR, TasS$S
WHERE R. nodel =S. node2
AND R. node2 =S. nodel

T[R.nodel, R.node2 c)-R.node1=S.node2 AND R.node2 = S.nodel(pR (T) X pS (T))

Core operators — sufficient to express
any query in relational model

* Relational model due to Edgar “Ted” Codd, a mathematician
at IBM in 1970

A Relational Model of Data for Large Shared Data
Banks". Communications of the ACM 13 (6): 377-387

* He proved that any query can be expressed using these core
operators: o, 1T, X, U, —, p

The Relational model is precise, implementable, and
we can operate on it (query/update, etc.)

http://www.acm.org/classics/nov95/toc.html
http://en.wikipedia.org/wiki/Communications_of_the_ACM

Relational algebra: closure

sname,
gpa
Students
gpa > 3.5;

How do we represent
this query in RA?

Note that any RA Operator
returns relation, so we can
compose complex queries from
known operators

nsname,gpa (O-gpa>3.5 (StUdentS))

Ogpa>3.5 (T[sname,gpa (Students))

Are these logically equivalent?

RA has Limitations !

e Cannot compute “transitive closure”

Namel Name?2 Relationship
Fred Mary Father
Mary Joe Cousin
Mary Bill Spouse

Nancy Lou Sister

e Find all direct and indirect relatives of Fred

e Cannot express in RA !l

* Need to write C program, use a graph engine, or PL-
SQL...

Derived RA operators

Join operation: Theta-join

1.The result of this operation is
constructed as follows:

a)Take the Cartesian product
of Rand S.

b) Select from the product only
those tuples that satisfy the
condition C.

2.5chema for the result is the
union of the schema of R and S, [
with “R” or “S” prefix as

necessary.

T=R ><condition S

Shortcut for
T=0 (RxS)

condition

Join operation

1.Equijoin is a subset of theta-
joins where the join condition is
equality

T=RB<p-s58 95

Shortcut for
T=0pp-sp (RXS)

. Equijoin

Special case of equijoin when

N atu ral JOI N attributes we want to use in join have

the same name in both tables
RS

Let A, A,,...,A, be the attributes in both the schema of R
and the schema of S.

Then atupler from R and a tuple s from S are
successfully paired if and only if r and s agree on each of

the attributes AL A, LA,

Outer join

1. For each tuple in R, include all
tuples in S which satisfy join
condition, but include also tuples
of R that do not have matches in S

2. For this case, pair tuples of R
with NULL [

Left outer join

T=RB< S

condition

Outer join: example

Anonymous patient P

Anonymous occupation O

age Zip disease age zip job
54 99999 heart 54 99999 lawyer
20 44444 flue 20 44444 cashier
33 66666 lung
T=P>X O

age Zip disease job

54 99999 heart lawyer

20 44444 flue cashier

33 66666 lung NULL

Quick question

If | have a relation R with 100 records and a relation S with
exactly 1 record, how many records will be in the result of R
LEFT OUTER JOIN S?

A. At least 100, but could be more

B. Could be any number between 0 and 100 inclusive
C. O

D. 1

E. 100

Quick question

If | have a relation R with 100 records and a relation S with
exactly 1 record, how many records will be in the result of R
LEFT OUTER JOIN S?

A. At least 100, but could be more

B. Could be any number between 0 and 100 inclusive
C. O

D. 1

Intersection

T=RNS

Why intersection is not a “core” operation?
RNMS

R-S(arein R butnotin§) R - (R-S)

Why intersection is not a “core” operation?

R N S shortcut to
R-—(R-S)

Can be derived using core operations

Set vs. bag (multi-set) semantics

Sets: {a,b,c}, {a,d,e,f}, ...
Bags: {a,a,b,c}, {b,b,b,b,b}, ...

Relational algebra has two semantics:
e Set semantics = standard relational algebra
* Bag semantics = extended Relational Algebra

Rule of thumb:
* Every paper will assume set semantics
* Every implementation will assume bag semantics

Operations on multisets

All RA operations need to be defined carefully on bags
* 6-(R): preserve the number of occurrences
* 1 ,(R): no duplicate elimination

* Cross-product, join: no duplicate elimination

This is important- relational DBMSs
work on multisets, not sets!

Extended operators on bags

e Duplicate elimination 6
* Sorting t

e Grouping and aggregationy

RDBMS query evaluation

How does a RDBMS answer your query?

SQL Relational Optimized :
Query |:> Algebra |:> RA Plan |:> Execution
(RA) Plan
Declarative query Translate to Find logically Execute each
(user declares relational algebra equivalent- but operator of the
what results are expression more efficient- RA optimized plan!

needed) expression

question

l SQL query RDBMS query optimizer: steps

parse * Convert parsed SQL into corresponding
parse tree RA expression

< * Apply known algebraic transformations

convert — produce improved logical query plan

Ioglcal query plan + Transform based on estimated cost

* Choose one min-cost logical expression
Improve Ioglcall * For each step, consider alternative

|mproved” l.g.p physical implementations
* Choose physical plan with min 1/Os
EStlmate S|ZeS statistics ° Execute
| l.g.p. +sizes
consider phy5|cal plans
[{P1,P2,.....}
answer

pick"best

RDBMS query evaluation

How does a RDBMS answer your query?

sQL
Query E>

Declarative query
(user declares
what results are
needed)

Relational
Algebra
(RA) Plan

Translate to
relational algebra
expression

=

Optimized :
RA Plan |:> Execution

Find logically Execute each
equivalent- but operator of the
more efficient- RA optimized plan!
expression

That we just
learned how to do!

Example: two SQL queries —the
same execution plan

R™ga-sed Ora-ss(RXS)
Join Cross-product
with selection
SELECT * SELECT *
FROM RJOIN S FROMR, S
ONR.A=S.B WHERE R.A=S.B

Two ways to request the same results

The optimizer does not care about the syntax of SQL query: it is going to
work on the algebraic representation anyway

Because the algebraic expressions are equivalent, the optimizer will have
the same final plan for both queries

RDBMS query evaluation

How does a RDBMS answer your query?

Relational

|:> Algebra |

(RA) Plan

Relational Algebra allows us to translate declarative (SQL)
gueries into precise and optimizable expressions!

question

l SQL query RDBMS query optimizer: steps

parse * Convert parsed SQL into corresponding
parse tree RA expression

< * Apply known algebraic transformations

convert — produce improved logical query plan

Ioglcal query plan + Transform based on estimated cost

* Choose one min-cost logical expression
Improve Ioglcall * For each step, consider alternative

|mproved” l.g.p physical implementations
* Choose physical plan with min 1/Os
estlmate S|ZeS statistics ° Execute
| 1.g.p. +sizes
consider phy5|cal plans
[{P1,P2,.....}
answer

pick"best

Translating general SQL queries
(SELECT-FROM-WHERE) into RA

 What is the general form of an SFW query in RA?

* Given a general SFW SQL query:

SELECTA 1, ..., A n
FROMR 1, ..., R m
WHERE c_1, ..., c_k;

* We can express this in relational algebra as follows:

TC A1, An (Gc1"'0ck(R1X---XRm))

We can visualize the RA
expression as a tree

np

>

ng(R(4,B) x S(B,C)))
R(A,B) S(B,C)

Bottom-up tree traversal = order of operation execution!

From RA to SQL

np
What SQL query does this

N correspond to?

Are there any logically
. B
R(A,B) S(B,C) equivalent RA expressions:

From SQL to RA: example 1

My p
RATD
R,S,T G A<10
R.B=S.B
AND S.C = T.C >
AND R.A < 10;
><] T(C,D)

R(A,B) S(B,C)
T[A,D(UA<10(T X (R > 5)))

From SQL to RA: example 2

T[city,c
city, count (*)
S
city . Gp>100
sum(price)>100

Y city, sum(price) = p, count(*)->c

S(product,city,price)

T[city, C (O- p>100 (V city, sum(price) = p, count(*)%c(S)))

RDBMS query evaluation

How does a RDBMS answer your query?
E> Optimized
RA Plan

We transform the original RA expression into
equivalent expressions using algebraic laws

question

l SQL query RDBMS query optimizer: steps

parse * Convert parsed SQL into corresponding
parse tree RA expression

* Apply known algebraic transformations

@@ — produce improved logical query plan

Ioglcal query plan + Transform based on estimated cost

* Choose one min-cost logical expression
mprove IoglcaII * For each step, consider alternative

|mproved" l.g.p physical implementations
* Choose physical plan with min I/Os
estlmate S|ZeS statistics ° Execute
| 1.g.p. +sizes
consider phyS|caI plans
[{P1,P2,.....}
answer

pick"best

RA laws involving selection (o)

Selection for a single relation

* Splitting law:

oc.ol(R)=0:(op(R))

e Commutative law: order is flexible

oc(0p(R)) =0,(0-(R))

RA laws involving selection (o)

Binary selection (on 2 relations)

o.(RxS)=Rp><. S
o.(R><S)=0.(R)><S

o-.(R><, S)=0.(R)><y S

For the binary operators, we push the selection to R only if all
attributes in the condition C are in R.

Pushing selections: example

Consider R(A,B) and S(B,C) and the expression below:

cSA=1 N B<C(R Dq S)
1. Splitting AND Gaq (05 (RD><S))
2. Pushoto$S 041 (RD>< o5, A9))

3. PushotoR 0,41 (R) D<o (S)

Laws for (bag) projection

A simple law: Project out attributes that are not
needed later.

+ i.e. keep only the output attr. and any join attribute.
7, (R><S)= 7x (7, (R)><7y(S))
7 (R><¢ S) = 7, (7, (R) >< 7 (S))
7, (RxS)= 7z (7, (R)xmy(S))

ﬂL(GC(R)): ”L(GC(”M (R)))

Pushing projection: example

Schema R(a,b,c), S(c,d,e)

oo (R><S) = Taresx (7Tac (R) > 7 (S))

at+e—>X

7Z-a+b—>x,d+e—>y (R >< S) = ﬂ-x,y (ﬂ-a+b—>x,c (R) >< ﬂ'd+e—>y,c (S))

Why to push projections?

s <]
> m m on

R(A,B) S(B,C)

R(A,B) S(B,C)

Why might we prefer this plan?

Commutative and associative laws
for joins

 Commutative and associative laws for joins:

RXS=SXR
(RXS)XT=RX(S xT)

Above laws are applicable for both sets and bags

Quick question

* Given relation R(A,B):

* Here, projection & selection commute:
* 04=5(4(R)) < My(0y=5(R))

 What about here?
* T[B(UA=5(R)) © 04-5(ng(R)) ?

Logical optimization: example

R.ATD
R,S,T
R.B=S.B
ANDS.C=T.C
AND R.A< 10;

T[A,D(UA<10(T X (R 5)))

My p
Push down
selection on A so OA<10
it occurs earlier ><]
><] T(C,D)

R(A,B) S(B,C)

Logical optimization: example

R.ATD
R,S,T
R.B=S.B
ANDS.C=T.C
AND R.A< 10;

T[A,D(T X (04<10(R) X 5))

Push down T
. A,D
selection on A so
it occurs earlier ><]
><] T(C,D)

c5A<10 S(B C)
R(A,B)

Logical optimization: example

R.ATD
R,S,T
R.B=S.B
ANDS.C=T.C
AND R.A< 10;

Ty, (T X (04<10(R) X 5))

Push down Ta,D

projection so it]
occurs earlier

><] T1(c,D)

c5A<10 S(B C)
R(A,B)

Logical optimization: example

We eliminate B

RA,TD earlier! 4D

R,S,T
ANDsE'BT:CS'B In general, when >
AND R.A < 10; is an attribute

not needed...? o T(C,D)
>
OCa<10

TAD (T X “A,C(UA<10(R) X 5)) S(B,C)

R(A,B)

Improving logical query plans
using algebraic laws: summary

1.

2.

Push o as far down as possible

Do splitting of complex conditions in o in order to push o
even further

Push m as far down as possible, introduce new early & (but
take care for exceptions)

Combine o with x to produce ®-joins or equijoins

Choose an order for joins Topic by itself

Why still so many different plans selected
for the same query? Depends on sizes of

intermediate outputs

100

EXTENDEDPRICE

LINEITEM.L

g

SELECT extendedprice

FROM lineitem, supplier

WHERE lineitem.sID = supplier.sIiD
AND extendedprice: varies

AND supplier.accountbalance: varies

[==)
=
I

g

=
(=]
L

100 .m

Picasso Database Query Optimizer Visualizer:
link

SUPFPLIER.S ACCTBAL

* Same query executed with different

selection cardinality — covering from
0 to 100% of all values —results in
completely different plans

* Here: 89 plans, each in different

color

http://dsl.serc.iisc.ernet.in/publications/conference/demo_vldb10.pdf

Coming next:
cost-based transformations

