
Roadmap

Stable storage

External memory
algorithms and
data structures

Implementing
relational
operators

Introduction to
query optimization

Parallel
dataflow

Algorithms for
MapReduce

Implementing
concurrency

Implementing
resilience –
coping with

system failures

Handling large amount of data efficiently

Query optimization
Part I. Logical query optimization

Lecture 03.03

By Marina Barsky
Winter 2017, University of Toronto

Reminder:
Relational Algebra Operators

Core operators:

• Selection σ

• Projection π

• Cartesian product x

• Union U

• Difference –

• Renaming ρ

Derived operators:

• Join ⋈

• Intersection ∩

Core RA operators

Slice operations: Projection

S=attribute list(R)

Produces from relation R a

new relation that has only the

A1, …, An columns of R.

Slice operations: Selection

S=condition (R)

Produces a new relation with those

tuples of R which satisfy condition

C.

Join operation: Cartesian product

T=R x S

X

1. Set of tuples rs that are formed

by choosing the first part (r) to be

any tuple of R and the second part

(s) to be any tuple of S.

2.Schema for the resulting relation

is the union of schemas for R and

S.

3.If R and S happen to have some

attributes in common, then prefix

those attributes by the relation

name.

Union

T=R S

R S

R U S

Difference

R S

R - S

R S

Renaming Operator

S(A1,A2,…,An) (R)

1. Resulting relation has exactly the same tuples as R, but the name of

the relation is S.

2. Moreover, the attributes of the resulting relation S are named A1, A2,

…, An, in order from the left.

Query with renaming: example

• Find all reciprocally connected
nodes in a directed graph

• By renaming T we created two
identical relations R and S, and we
now extract all tuples where for
each pair X → Y in R there is a pair
Y → X in S

T (node1, node2)

A → B
B → A
B → C
A → C
C → B

SELECT R.node1, R. node2
FROM T as R, T as S
WHERE R. node1 = S. node2
AND R. node2 = S. node1

πR.node1, R.node2 σR.node1=S.node2 AND R.node2 = S.node1(R (T) x S (T))

Core operators – sufficient to express
any query in relational model

• Relational model due to Edgar “Ted” Codd, a mathematician
at IBM in 1970

• A Relational Model of Data for Large Shared Data
Banks". Communications of the ACM 13 (6): 377–387

• He proved that any query can be expressed using these core
operators: σ, π, x, U, –, ρ

The Relational model is precise, implementable, and
we can operate on it (query/update, etc.)

http://www.acm.org/classics/nov95/toc.html
http://en.wikipedia.org/wiki/Communications_of_the_ACM

Note that any RA Operator
returns relation, so we can
compose complex queries from
known operators

SELECT DISTINCT
sname,
gpa

FROM Students
WHERE gpa > 3.5;

Students(sid,sname,gpa)

How do we represent
this query in RA?

π𝑠𝑛𝑎𝑚𝑒,𝑔𝑝𝑎(𝜎𝑔𝑝𝑎>3.5(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠))

𝜎𝑔𝑝𝑎>3.5(π𝑠𝑛𝑎𝑚𝑒,𝑔𝑝𝑎(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠))

Are these logically equivalent?

Relational algebra: closure

RA has Limitations !

• Cannot compute “transitive closure”

• Find all direct and indirect relatives of Fred

• Cannot express in RA !!!

• Need to write C program, use a graph engine, or PL-
SQL…

Name1 Name2 Relationship

Fred Mary Father

Mary Joe Cousin

Mary Bill Spouse

Nancy Lou Sister

Derived RA operators

T= R condition S

Join operation: Theta-join

Shortcut for
T=σcondition (R x S)

X

σ

1.The result of this operation is

constructed as follows:

a)Take the Cartesian product

of R and S.

b) Select from the product only

those tuples that satisfy the

condition C.

2.Schema for the result is the

union of the schema of R and S,

with “R” or “S” prefix as

necessary.

T= R R.A = S.B S

Join operation: Equijoin

Shortcut for
T=σ R.A = S.B (R x S)

X

σ

1.Equijoin is a subset of theta-

joins where the join condition is

equality

Natural Join

R S

Let A1, A2,…,An be the attributes in both the schema of R

and the schema of S.

Then a tuple r from R and a tuple s from S are

successfully paired if and only if r and s agree on each of

the attributes A1, A2, …, An.

Special case of equijoin when

attributes we want to use in join have

the same name in both tables

T= R condition S

Outer join
1. For each tuple in R, include all

tuples in S which satisfy join

condition, but include also tuples

of R that do not have matches in S

2. For this case, pair tuples of R

with NULL

X

NULL

σ

Left outer join

Outer join: example

age zip disease

54 99999 heart

20 44444 flue

33 66666 lung

age zip job

54 99999 lawyer

20 44444 cashier

Anonymous patient P Anonymous occupation O

age zip disease job

54 99999 heart lawyer

20 44444 flue cashier

33 66666 lung NULL

T= P O

Quick question

If I have a relation R with 100 records and a relation S with
exactly 1 record, how many records will be in the result of R
LEFT OUTER JOIN S?

A. At least 100, but could be more

B. Could be any number between 0 and 100 inclusive

C. 0

D. 1

E. 100

Quick question

If I have a relation R with 100 records and a relation S with
exactly 1 record, how many records will be in the result of R
LEFT OUTER JOIN S?

A. At least 100, but could be more

B. Could be any number between 0 and 100 inclusive

C. 0

D. 1

E. 100

Intersection

T=R S
R S

R S

R S

Why intersection is not a “core” operation?

R S

R-S

R - S (are in R but not in S)

R S

R - (R-S)

R S

Why intersection is not a “core” operation?

R S shortcut to
R – (R – S)

Can be derived using core operations

Set vs. bag (multi-set) semantics

• Sets: {a,b,c}, {a,d,e,f}, …

• Bags: {a,a,b,c}, {b,b,b,b,b}, …

• Relational algebra has two semantics:

• Set semantics = standard relational algebra

• Bag semantics = extended Relational Algebra

• Rule of thumb:

• Every paper will assume set semantics

• Every implementation will assume bag semantics

Operations on multisets

All RA operations need to be defined carefully on bags

• C(R): preserve the number of occurrences

• π A(R): no duplicate elimination

• Cross-product, join: no duplicate elimination

This is important- relational DBMSs
work on multisets, not sets!

Extended operators on bags

• Duplicate elimination δ

• Sorting τ

• Grouping and aggregation γ

RDBMS query evaluation

How does a RDBMS answer your query?

SQL
Query

Relational
Algebra

(RA) Plan

Optimized
RA Plan

Execution

Declarative query
(user declares
what results are
needed)

Translate to
relational algebra
expression

Find logically
equivalent- but
more efficient- RA
expression

Execute each
operator of the
optimized plan!

{P1,P2,…..}

parse

convert

improve logically

estimate sizes

consider physical plans

estimate costs

pick best execute

answer

SQL query

parse tree

logical query plan

“improved” l.q.p

l.q.p. +sizes

statistics

question
RDBMS query optimizer: steps

• Convert parsed SQL into corresponding
RA expression

• Apply known algebraic transformations
– produce improved logical query plan

• Transform based on estimated cost
• Choose one min-cost logical expression
• For each step, consider alternative

physical implementations
• Choose physical plan with min I/Os
• Execute

RDBMS query evaluation

How does a RDBMS answer your query?

SQL
Query

Relational
Algebra

(RA) Plan

Optimized
RA Plan

Execution

Declarative query
(user declares
what results are
needed)

Translate to
relational algebra
expression

Find logically
equivalent- but
more efficient- RA
expression

Execute each
operator of the
optimized plan!

That we just
learned how to do!

Example: two SQL queries – the
same execution plan

R ⋈R.A = S.B S σ R.A = S.B (R x S)

SELECT *
FROM R, S
WHERE R.A = S.B

SELECT *
FROM R JOIN S
ON R.A = S.B

Join Cross-product
with selection

• Two ways to request the same results
• The optimizer does not care about the syntax of SQL query: it is going to

work on the algebraic representation anyway
• Because the algebraic expressions are equivalent, the optimizer will have

the same final plan for both queries

RDBMS query evaluation

How does a RDBMS answer your query?

SQL
Query

Relational
Algebra

(RA) Plan

Optimized
RA Plan

Execution

Relational Algebra allows us to translate declarative (SQL)
queries into precise and optimizable expressions!

{P1,P2,…..}

parse

convert

improve logically

estimate sizes

consider physical plans

estimate costs

pick best execute

answer

SQL query

parse tree

logical query plan

“improved” l.q.p

l.q.p. +sizes

statistics

question
RDBMS query optimizer: steps

• Convert parsed SQL into corresponding
RA expression

• Apply known algebraic transformations
– produce improved logical query plan

• Transform based on estimated cost
• Choose one min-cost logical expression
• For each step, consider alternative

physical implementations
• Choose physical plan with min I/Os
• Execute

Translating general SQL queries
(SELECT-FROM-WHERE) into RA

• What is the general form of an SFW query in RA?

• Given a general SFW SQL query:

SELECT A_1, ..., A_n

FROM R_1, ..., R_m

WHERE c_1, ..., c_k;

• We can express this in relational algebra as follows:

π A1,...,An (σc1⋯σck
(R1x…xRm))

We can visualize the RA
expression as a tree

π𝐵

R(A,B) S(B,C)

π𝐵(𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶)

Bottom-up tree traversal = order of operation execution!

From RA to SQL

π𝐵

R(A,B) S(B,C)

What SQL query does this
correspond to?

Are there any logically
equivalent RA expressions?

π𝐴,𝐷

R(A,B) S(B,C)

T(C,D)

A<10

π𝐴,𝐷(𝜎𝐴<10 𝑇 ⋈ 𝑅 ⋈ 𝑆)

SELECT R.A,T.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

R(A,B) S(B,C) T(C,D)

From SQL to RA: example 1

π𝑐𝑖𝑡𝑦,𝑐

S(product,city,price)

γ 𝑐𝑖𝑡𝑦, 𝑠𝑢𝑚(p𝑟𝑖𝑐𝑒) → p, 𝑐𝑜𝑢𝑛𝑡(∗)→𝑐

p>100

SELECT city, count (*)
FROM S
GROUP BY city
HAVING sum(price)>100

S (product, city, price)

π𝑐𝑖𝑡𝑦, 𝑐 (𝜎 𝑝>100 (γ 𝑐𝑖𝑡𝑦, 𝑠𝑢𝑚(p𝑟𝑖𝑐𝑒) → p, 𝑐𝑜𝑢𝑛𝑡(∗)→𝑐(𝑆)))

From SQL to RA: example 2

RDBMS query evaluation

How does a RDBMS answer your query?

SQL
Query

Relational
Algebra

(RA) Plan

Optimized
RA Plan

Execution

We transform the original RA expression into
equivalent expressions using algebraic laws

{P1,P2,…..}

parse

convert

improve logically

estimate sizes

consider physical plans

estimate costs

pick best execute

answer

SQL query

parse tree

logical query plan

“improved” l.q.p

l.q.p. +sizes

statistics

question
RDBMS query optimizer: steps

• Convert parsed SQL into corresponding
RA expression

• Apply known algebraic transformations
– produce improved logical query plan

• Transform based on estimated cost
• Choose one min-cost logical expression
• For each step, consider alternative

physical implementations
• Choose physical plan with min I/Os
• Execute

RA laws involving selection ()

Selection for a single relation

• Splitting law:

• Commutative law: order is flexible

))(()(RR DCDC

))(())((RR CDDC

Binary selection (on 2 relations)

RA laws involving selection ()

)(SRC

)(SRC

)(SR DC

For the binary operators, we push the selection to R only if all

attributes in the condition C are in R.

SR C

SRC)(

SR DC)(

Pushing selections: example

Consider R(A,B) and S(B,C) and the expression below:

A=1 ∩ B<C(R❖ S)

1. Splitting AND A=1 (B < C(R❖ S))

2. Push to S A=1 (R❖ B < C(S))

3. Push to R A=1 (R) ❖ B < C(S)

Laws for (bag) projection

A simple law: Project out attributes that are not
needed later.

• i.e. keep only the output attr. and any join attribute.

)(SRL

)(SR CL

)(SRL

))()((SR NML

))()((SR NCML

))()((SR NML

 RCL RMCL

Pushing projection: example

Schema R(a,b,c), S(c,d,e)

)(SRxea))()((,, SR eccaxea

)(, SRyedxba))()((,,, SR cyedcxbayx

Why to push projections?

π𝐵

R(A,B) S(B,C)

π𝐵

R(A,B) S(B,C)

π𝐵

Why might we prefer this plan?

Commutative and associative laws
for joins

• Commutative and associative laws for joins:

Above laws are applicable for both sets and bags

R ⋈ S = S ⋈ R
(R ⋈ S) ⋈ T = R ⋈ (S ⋈ T)

Quick question

• Given relation R(A,B):

• Here, projection & selection commute:

• 𝜎𝐴=5(π𝐴(𝑅)) ↔ π𝐴(𝜎𝐴=5(𝑅))

• What about here?

• π𝐵 𝜎𝐴=5 𝑅 ↔ 𝜎𝐴=5(π𝐵(𝑅)) ?

π𝐴,𝐷

R(A,B) S(B,C)

T(C,D)

A<10

π𝐴,𝐷(𝜎𝐴<10 𝑇 ⋈ 𝑅 ⋈ 𝑆)

SELECT R.A, T.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

R(A,B) S(B,C) T(C,D)

Logical optimization: example

Push down
selection on A so
it occurs earlier

π𝐴,𝐷

R(A,B)

S(B,C)

T(C,D)

π𝐴,𝐷 𝑇 ⋈ 𝜎𝐴<10(𝑅) ⋈ 𝑆

SELECT R.A, T.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

A<10

Push down
selection on A so
it occurs earlier

R(A,B) S(B,C) T(C,D)

Logical optimization: example

π𝐴,𝐷

R(A,B)

S(B,C)

T(C,D)

π𝐴,𝐷 𝑇 ⋈ 𝜎𝐴<10(𝑅) ⋈ 𝑆

SELECT R.A, T.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

Push down
projection so it
occurs earlier

A<10

R(A,B) S(B,C) T(C,D)

Logical optimization: example

π𝐴,𝐷

R(A,B)

S(B,C)

T(C,D)

π𝐴,𝐷 𝑇 ⋈ π𝐴,𝐶 𝜎𝐴<10(𝑅) ⋈ 𝑆

SELECT R.A, T.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

We eliminate B
earlier!

A<10

π𝐴,𝐶

In general, when
is an attribute
not needed…?

R(A,B) S(B,C) T(C,D)

Logical optimization: example

Improving logical query plans
using algebraic laws: summary

1. Push as far down as possible

2. Do splitting of complex conditions in in order to push
even further

3. Push as far down as possible, introduce new early (but
take care for exceptions)

4. Combine with to produce -joins or equijoins

5. Choose an order for joins Topic by itself

Why still so many different plans selected
for the same query? Depends on sizes of
intermediate outputs

• Same query executed with different
selection cardinality – covering from
0 to 100% of all values – results in
completely different plans

• Here: 89 plans, each in different
color

SELECT extendedprice
FROM lineitem, supplier
WHERE lineitem.sID = supplier.sID
AND extendedprice: varies
AND supplier.accountbalance: varies

Picasso Database Query Optimizer Visualizer:
link

http://dsl.serc.iisc.ernet.in/publications/conference/demo_vldb10.pdf

Coming next:
cost-based transformations

