
Roadmap

Stable storage

External memory
algorithms and
data structures

Implementing
relational
operators

Introduction to
query optimization

Parallel
dataflow

Algorithms for
MapReduce

Implementing
concurrency

Implementing
resilience –
coping with

system failures

Handling large amount of data efficiently

Query optimization
Part I. Logical query optimization

Lecture 03.03

By Marina Barsky
Winter 2017, University of Toronto

Reminder:
Relational Algebra Operators

Core operators:

• Selection σ

• Projection π

• Cartesian product x

• Union U

• Difference –

• Renaming ρ

Derived operators:

• Join ⋈

• Intersection ∩

Core RA operators

Slice operations: Projection

S=attribute list(R)



Produces from relation R a

new relation that has only the

A1, …, An columns of R.

Slice operations: Selection

S=condition (R)

Produces a new relation with those

tuples of R which satisfy condition

C.

Join operation: Cartesian product

T=R x S

X

1. Set of tuples rs that are formed

by choosing the first part (r) to be

any tuple of R and the second part

(s) to be any tuple of S.

2.Schema for the resulting relation

is the union of schemas for R and

S.

3.If R and S happen to have some

attributes in common, then prefix

those attributes by the relation

name.

Union

T=R  S

R S

R U S

Difference

R  S

R - S

R S

Renaming Operator

S(A1,A2,…,An) (R)

1. Resulting relation has exactly the same tuples as R, but the name of

the relation is S.

2. Moreover, the attributes of the resulting relation S are named A1, A2,

…, An, in order from the left.

Query with renaming: example

• Find all reciprocally connected
nodes in a directed graph

• By renaming T we created two
identical relations R and S, and we
now extract all tuples where for
each pair X → Y in R there is a pair
Y → X in S

T (node1, node2)

A → B
B → A
B → C
A → C
C → B

SELECT R.node1, R. node2
FROM T as R, T as S
WHERE R. node1 = S. node2
AND R. node2 = S. node1

πR.node1, R.node2 σR.node1=S.node2 AND R.node2 = S.node1(R (T) x S (T))

Core operators – sufficient to express
any query in relational model

• Relational model due to Edgar “Ted” Codd, a mathematician
at IBM in 1970

• A Relational Model of Data for Large Shared Data
Banks". Communications of the ACM 13 (6): 377–387

• He proved that any query can be expressed using these core
operators: σ, π, x, U, –, ρ

The Relational model is precise, implementable, and
we can operate on it (query/update, etc.)

http://www.acm.org/classics/nov95/toc.html
http://en.wikipedia.org/wiki/Communications_of_the_ACM

Note that any RA Operator
returns relation, so we can
compose complex queries from
known operators

SELECT DISTINCT
sname,
gpa

FROM Students
WHERE gpa > 3.5;

Students(sid,sname,gpa)

How do we represent
this query in RA?

π𝑠𝑛𝑎𝑚𝑒,𝑔𝑝𝑎(𝜎𝑔𝑝𝑎>3.5(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠))

𝜎𝑔𝑝𝑎>3.5(π𝑠𝑛𝑎𝑚𝑒,𝑔𝑝𝑎(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠))

Are these logically equivalent?

Relational algebra: closure

RA has Limitations !

• Cannot compute “transitive closure”

• Find all direct and indirect relatives of Fred

• Cannot express in RA !!!

• Need to write C program, use a graph engine, or PL-
SQL…

Name1 Name2 Relationship

Fred Mary Father

Mary Joe Cousin

Mary Bill Spouse

Nancy Lou Sister

Derived RA operators

T= R condition S

Join operation: Theta-join

Shortcut for
T=σcondition (R x S)

X

σ

1.The result of this operation is

constructed as follows:

a)Take the Cartesian product

of R and S.

b) Select from the product only

those tuples that satisfy the

condition C.

2.Schema for the result is the

union of the schema of R and S,

with “R” or “S” prefix as

necessary.

T= R R.A = S.B S

Join operation: Equijoin

Shortcut for
T=σ R.A = S.B (R x S)

X

σ

1.Equijoin is a subset of theta-

joins where the join condition is

equality

Natural Join

R S

Let A1, A2,…,An be the attributes in both the schema of R

and the schema of S.

Then a tuple r from R and a tuple s from S are

successfully paired if and only if r and s agree on each of

the attributes A1, A2, …, An.

Special case of equijoin when

attributes we want to use in join have

the same name in both tables

T= R condition S

Outer join
1. For each tuple in R, include all

tuples in S which satisfy join

condition, but include also tuples

of R that do not have matches in S

2. For this case, pair tuples of R

with NULL

X

NULL

σ

Left outer join

Outer join: example

age zip disease

54 99999 heart

20 44444 flue

33 66666 lung

age zip job

54 99999 lawyer

20 44444 cashier

Anonymous patient P Anonymous occupation O

age zip disease job

54 99999 heart lawyer

20 44444 flue cashier

33 66666 lung NULL

T= P O

Quick question

If I have a relation R with 100 records and a relation S with
exactly 1 record, how many records will be in the result of R
LEFT OUTER JOIN S?

A. At least 100, but could be more

B. Could be any number between 0 and 100 inclusive

C. 0

D. 1

E. 100

Quick question

If I have a relation R with 100 records and a relation S with
exactly 1 record, how many records will be in the result of R
LEFT OUTER JOIN S?

A. At least 100, but could be more

B. Could be any number between 0 and 100 inclusive

C. 0

D. 1

E. 100

Intersection

T=R  S
R S

R S

R  S

Why intersection is not a “core” operation?

R S

R-S

R - S (are in R but not in S)

R S

R - (R-S)

R  S

Why intersection is not a “core” operation?

R  S shortcut to
R – (R – S)

Can be derived using core operations

Set vs. bag (multi-set) semantics

• Sets: {a,b,c}, {a,d,e,f}, …

• Bags: {a,a,b,c}, {b,b,b,b,b}, …

• Relational algebra has two semantics:

• Set semantics = standard relational algebra

• Bag semantics = extended Relational Algebra

• Rule of thumb:

• Every paper will assume set semantics

• Every implementation will assume bag semantics

Operations on multisets

All RA operations need to be defined carefully on bags

• C(R): preserve the number of occurrences

• π A(R): no duplicate elimination

• Cross-product, join: no duplicate elimination

This is important- relational DBMSs
work on multisets, not sets!

Extended operators on bags

• Duplicate elimination δ

• Sorting τ

• Grouping and aggregation γ

RDBMS query evaluation

How does a RDBMS answer your query?

SQL
Query

Relational
Algebra

(RA) Plan

Optimized
RA Plan

Execution

Declarative query
(user declares
what results are
needed)

Translate to
relational algebra
expression

Find logically
equivalent- but
more efficient- RA
expression

Execute each
operator of the
optimized plan!

{P1,P2,…..}

parse

convert

improve logically

estimate sizes

consider physical plans

estimate costs

pick best execute

answer

SQL query

parse tree

logical query plan

“improved” l.q.p

l.q.p. +sizes

statistics

question
RDBMS query optimizer: steps

• Convert parsed SQL into corresponding
RA expression

• Apply known algebraic transformations
– produce improved logical query plan

• Transform based on estimated cost
• Choose one min-cost logical expression
• For each step, consider alternative

physical implementations
• Choose physical plan with min I/Os
• Execute

RDBMS query evaluation

How does a RDBMS answer your query?

SQL
Query

Relational
Algebra

(RA) Plan

Optimized
RA Plan

Execution

Declarative query
(user declares
what results are
needed)

Translate to
relational algebra
expression

Find logically
equivalent- but
more efficient- RA
expression

Execute each
operator of the
optimized plan!

That we just
learned how to do!

Example: two SQL queries – the
same execution plan

R ⋈R.A = S.B S σ R.A = S.B (R x S)

SELECT *
FROM R, S
WHERE R.A = S.B

SELECT *
FROM R JOIN S
ON R.A = S.B

Join Cross-product
with selection

• Two ways to request the same results
• The optimizer does not care about the syntax of SQL query: it is going to

work on the algebraic representation anyway
• Because the algebraic expressions are equivalent, the optimizer will have

the same final plan for both queries

RDBMS query evaluation

How does a RDBMS answer your query?

SQL
Query

Relational
Algebra

(RA) Plan

Optimized
RA Plan

Execution

Relational Algebra allows us to translate declarative (SQL)
queries into precise and optimizable expressions!

{P1,P2,…..}

parse

convert

improve logically

estimate sizes

consider physical plans

estimate costs

pick best execute

answer

SQL query

parse tree

logical query plan

“improved” l.q.p

l.q.p. +sizes

statistics

question
RDBMS query optimizer: steps

• Convert parsed SQL into corresponding
RA expression

• Apply known algebraic transformations
– produce improved logical query plan

• Transform based on estimated cost
• Choose one min-cost logical expression
• For each step, consider alternative

physical implementations
• Choose physical plan with min I/Os
• Execute

Translating general SQL queries
(SELECT-FROM-WHERE) into RA

• What is the general form of an SFW query in RA?

• Given a general SFW SQL query:

SELECT A_1, ..., A_n

FROM R_1, ..., R_m

WHERE c_1, ..., c_k;

• We can express this in relational algebra as follows:

π A1,...,An (σc1⋯σck
(R1x…xRm))

We can visualize the RA
expression as a tree

π𝐵

R(A,B) S(B,C)

π𝐵(𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶)

Bottom-up tree traversal = order of operation execution!

From RA to SQL

π𝐵

R(A,B) S(B,C)

What SQL query does this
correspond to?

Are there any logically
equivalent RA expressions?

π𝐴,𝐷

R(A,B) S(B,C)

T(C,D)

A<10

π𝐴,𝐷(𝜎𝐴<10 𝑇 ⋈ 𝑅 ⋈ 𝑆)

SELECT R.A,T.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

R(A,B) S(B,C) T(C,D)

From SQL to RA: example 1

π𝑐𝑖𝑡𝑦,𝑐

S(product,city,price)

γ 𝑐𝑖𝑡𝑦, 𝑠𝑢𝑚(p𝑟𝑖𝑐𝑒) → p, 𝑐𝑜𝑢𝑛𝑡(∗)→𝑐

p>100

SELECT city, count (*)
FROM S
GROUP BY city
HAVING sum(price)>100

S (product, city, price)

π𝑐𝑖𝑡𝑦, 𝑐 (𝜎 𝑝>100 (γ 𝑐𝑖𝑡𝑦, 𝑠𝑢𝑚(p𝑟𝑖𝑐𝑒) → p, 𝑐𝑜𝑢𝑛𝑡(∗)→𝑐(𝑆)))

From SQL to RA: example 2

RDBMS query evaluation

How does a RDBMS answer your query?

SQL
Query

Relational
Algebra

(RA) Plan

Optimized
RA Plan

Execution

We transform the original RA expression into
equivalent expressions using algebraic laws

{P1,P2,…..}

parse

convert

improve logically

estimate sizes

consider physical plans

estimate costs

pick best execute

answer

SQL query

parse tree

logical query plan

“improved” l.q.p

l.q.p. +sizes

statistics

question
RDBMS query optimizer: steps

• Convert parsed SQL into corresponding
RA expression

• Apply known algebraic transformations
– produce improved logical query plan

• Transform based on estimated cost
• Choose one min-cost logical expression
• For each step, consider alternative

physical implementations
• Choose physical plan with min I/Os
• Execute

RA laws involving selection ()

Selection for a single relation

• Splitting law:

• Commutative law: order is flexible

))(()(RR DCDC  

))(())((RR CDDC  

Binary selection (on 2 relations)

RA laws involving selection ()

)(SRC

)(SRC 

)(SR DC 

For the binary operators, we push the selection to R only if all

attributes in the condition C are in R.

SR C

SRC )(

SR DC )(

Pushing selections: example

Consider R(A,B) and S(B,C) and the expression below:

A=1 ∩ B<C(R❖ S)

1. Splitting AND A=1 (B < C(R❖ S))

2. Push  to S A=1 (R❖ B < C(S))

3. Push  to R A=1 (R) ❖ B < C(S)

Laws for (bag) projection

A simple law: Project out attributes that are not
needed later.

• i.e. keep only the output attr. and any join attribute.

)(SRL 

)(SR CL 

)(SRL

))()((SR NML  

))()((SR NCML  

))()((SR NML  

  RCL     RMCL 

Pushing projection: example

Schema R(a,b,c), S(c,d,e)

)(SRxea ))()((,, SR eccaxea  

)(, SRyedxba ))()((,,, SR cyedcxbayx   

Why to push projections?

π𝐵

R(A,B) S(B,C)

π𝐵

R(A,B) S(B,C)

π𝐵

Why might we prefer this plan?

Commutative and associative laws
for joins

• Commutative and associative laws for joins:

Above laws are applicable for both sets and bags

R ⋈ S = S ⋈ R
(R ⋈ S) ⋈ T = R ⋈ (S ⋈ T)

Quick question

• Given relation R(A,B):

• Here, projection & selection commute:

• 𝜎𝐴=5(π𝐴(𝑅)) ↔ π𝐴(𝜎𝐴=5(𝑅))

• What about here?

• π𝐵 𝜎𝐴=5 𝑅 ↔ 𝜎𝐴=5(π𝐵(𝑅)) ?

π𝐴,𝐷

R(A,B) S(B,C)

T(C,D)

A<10

π𝐴,𝐷(𝜎𝐴<10 𝑇 ⋈ 𝑅 ⋈ 𝑆)

SELECT R.A, T.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

R(A,B) S(B,C) T(C,D)

Logical optimization: example

Push down
selection on A so
it occurs earlier

π𝐴,𝐷

R(A,B)

S(B,C)

T(C,D)

π𝐴,𝐷 𝑇 ⋈ 𝜎𝐴<10(𝑅) ⋈ 𝑆

SELECT R.A, T.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

A<10

Push down
selection on A so
it occurs earlier

R(A,B) S(B,C) T(C,D)

Logical optimization: example

π𝐴,𝐷

R(A,B)

S(B,C)

T(C,D)

π𝐴,𝐷 𝑇 ⋈ 𝜎𝐴<10(𝑅) ⋈ 𝑆

SELECT R.A, T.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

Push down
projection so it
occurs earlier

A<10

R(A,B) S(B,C) T(C,D)

Logical optimization: example

π𝐴,𝐷

R(A,B)

S(B,C)

T(C,D)

π𝐴,𝐷 𝑇 ⋈ π𝐴,𝐶 𝜎𝐴<10(𝑅) ⋈ 𝑆

SELECT R.A, T.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

We eliminate B
earlier!

A<10

π𝐴,𝐶

In general, when
is an attribute
not needed…?

R(A,B) S(B,C) T(C,D)

Logical optimization: example

Improving logical query plans
using algebraic laws: summary

1. Push  as far down as possible

2. Do splitting of complex conditions in  in order to push 
even further

3. Push  as far down as possible, introduce new early  (but
take care for exceptions)

4. Combine  with  to produce -joins or equijoins

5. Choose an order for joins Topic by itself

Why still so many different plans selected
for the same query? Depends on sizes of
intermediate outputs

• Same query executed with different
selection cardinality – covering from
0 to 100% of all values – results in
completely different plans

• Here: 89 plans, each in different
color

SELECT extendedprice
FROM lineitem, supplier
WHERE lineitem.sID = supplier.sID
AND extendedprice: varies
AND supplier.accountbalance: varies

Picasso Database Query Optimizer Visualizer:
link

http://dsl.serc.iisc.ernet.in/publications/conference/demo_vldb10.pdf

Coming next:
cost-based transformations

